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Abstract An alternatl\e to the usual proced ure of detcnlllning the maximum loads and correspond
ing coordinates as expansions in terms of an imperfection parameter is presented. The present
approach is direct and does not require the development of Il1\erse expanSions. The procedure is
based on the concept of least-degeneracy. \\ hich has also been used as the basis for the analysis in
a wide variety of other applications. Use of the method is demonstrated by applying it to two
examples: one symmetric bifurcation and one asymmetric bifurcatIOn. It is shown that the present
method very efficiently reproduces known results '\ bnef di,n"'lon of the consistent retention of
terms in the various expamions IS also presented

I I'iTRODUTI()".

The general theory of elasllc stability was originally formulated for continuous systems by
Koiter (1945), and a number of researchers have contributed to a similar development for
discrete systems. An account of the achievements in the theory in terms of generalized
coordinates may be found in the books by Croll and Walker (1972). Thompson and Hunt
(1973), Huseyin (1975) and. more recently. EI t'aschie (1990) Distinct critical states in the
theory are found to be of two kinds: limit points and bifurcations points, and special
attention is given to the sensitivity of critical states \\ ith respect to structural imperfections.
An account of imperfection sensitivity may be found 111 the literature mentioned above and
in the many references cited therein.

For critical states that are characterized as hlfurC<ltions. the usual approach to imper
fection sensitivity is to define a new parameter I:. \\ hich senes as a measure of the amplitude
of a given imperfection, and write the total potential energy I' of the system in terms of the
usual control i. and response Q; parameters plus the new imperfection parameter. A critical
state satisfies two conditions: equilibrium (associated WIth the zero of the first variation of
V) and critical stability (associated with the zero or the second variation of V) (Croll and
Walker, 1972; Thompson and Hunt. 1973: H useyin. 1975: EI Naschie, 1990). Imperfection
sensitivity is obtained by perturbing these two equations ll1 order to find the critical state
as a function of the imperfection amplitude. This dependence is usually written as icc = i'c(e).
The problem is that in bifurcatton analysis such a relation has an infinite slope at <: = 0 and
the expansion cannot be made from that point by the use or regular perturbation methods.

One solution to this problem is described hy Thompson and Hunt (1973). The per
turbation is carried out with respect to another parameter. say Q I. and series are found in
the form Ac = i.c(Q I) : i: = i:( Q I ): Q!, = Q!c( Q I)' where ( denotes critical values and j > I.
Then the middle expansion is inverted to provide Q Q (i:). and the result is substituted
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into the two remaining series to produce the desired expansions. The three primary expan
sions are regular and can be obtained in the usual straightforward way. The final expansions
are in terms of fractional powers of I: and have infinite slopes at c = O.

In this paper, we describe an alternative to this procedure, which does not require
intermediate expansions. The relationship between I.e and c as well as those between the QJC
and c are determined directly. The straightforward procedure of assuming expansions of
the zeros in integral powers of I: does not produce results because the zeros of the first
and second variations of the potential energy when 8 = 0 are always repeated roots. A
consequence of repeated roots is that the expansions do not go in integral powers of c.
Indeed the powers of c: cannot be assumed (/ priori and must be determined as part of the
solution. Similar problems arise in the analysis of dynamic systems when two or more
equilibrium points coalesce. Moreover. in analysing boundary-layer phenomena, whether
in plates. electrical conductors. or high Reynolds number flows, one must "stretch" one or
more coordinates. Typically, the stretching goes according to a nonintegral power of a
naturally occurring. small parameter (such as the square root of the reciprocal of the
Reynolds number in the case offlows). Determining the proper stretching in these singular
perturbation problems is a key element of the analysis, and that procedure is quite similar
to the one employed here. The problem is discussed in the contexts of single algebraic
equations and boundary layers in the text by Nayfeh (1981).

2. ;\ SLMMARY Ol THE AVAILABLE RESULTS

We shall follow the perturbation of Thompson and Hunt (1972). because it develops
the formulation not only for first, but also for higher order terms in the imperfection
sensitivity perturbation analysis. The total potential energy of the system is given by
V = V(Q" I.); the conditions of equilibrium and critical stability are written as

(': "
I ,,\, 'I)' cQ \; = O.

(",-" ( J

(1)

(2)

where eqn (2) is an eigenvalue problem in terms of the eigenvalue I, and the eigenvector Xf'

Typically. eqns (I) and (2) have multiple roots: this is demonstrated in the section on
applications below.

Following the general theory of elastic stability. one studies the critical state for c = 0
by writing the perturbation expansions

• . . I I), I, I ~ ) .2
1.(.1) = I., -r I. .1 + 2/. .\' + ... (3)

(4)

where s is a suitable perturbation parameter (say s = QI) and the coefficients are the
derivatives

( )',n '= i'" ( ) II

("'x" L'

evaluated at the critical state.
For the imperfection-sensitivit) analysis. we include the new parameter c (a measure

of the amplitude of the imperfection considered). so that V = V( Q" I.; c:). With reference to
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Fig. I. (a) Equilibnum raths for dIiferent lmrerfectlon ampilludes (hi Imperfection-sensitivity of
the maximum load. I. 'I I ... "

Fig. 1. eqns (I) and (2) represent the conditions of the maximum in each curve, for a
specific imperfection. The particular example presented in Fig. I is an unstable symmetric
bifurcation when E; = O. but the imperfection breaks the bifurcation and leads to a nonlinear
path with a maximum i.maJ£). At E; = 0 in Fig. I b. the curve is tangent to the ;, axis; this
means that a regular perturbation analysis cannot be carried out to represent the curve.
Hunt (1971) proposed an alternative perturbation scheme by choosing an intermediate
variable as the perturbation parameter. namely \ = Q I' Thus. the following equations are
obtained:

(5)

(6)

(7)

where i. l • QII and 1:
1

are the first derivatives \vith respect to QI : and i. 2• Qi2 and £2 are the
second derivatives. The difference between eqns (» (7) and (3) and (4) is that the latter
are computed by perturbing eqn (I) for i: = 0: while the former are calculated from
perturbations of (I) and (2) for i: # O. Once the coefficients of eqns (5)-(7) are calculated.
the series are inverted to obtain i. ll"" = i.(I:). The expliclt form for these series, for the case
of asymmetric bifurcation. is

where

I. = I. + :X(I.II + /1(II + ; I;) --I- (8)

(9a)

/1 = I:
J. 1 ;: ~

(9b)

(9c)

In eqns (8) and (9). the notatIon I 2 - means that only thc positive square root is
considered. and the sign of;' depends upon the sign ol':x For the symmetric bifurcation the
sensitivity equation is
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where
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I l21.. , I.~£.4J[3 =- -----
2 £, I:,

3. PROPOSED SOLUTION

(10)

(11a)

(11 b)

(lIe)

Rather than using an intermediate perturbation parameter, as in eqns (5)-(7), we
employ s = £. We assume that the expansions for the maximum load, Am"" and the cor
responding coordinate, QmaX' have the following forms

(12a)

(12b)

where j = 1.2, ... K; and the positive exponents M. N, P, R, S. and T as well as the
coefficients I'e, 1'1' i.2• .•. and Qie, Q;I, .. are unknown. K is the order (i.e. number of
coordinates needed to describe the state) of the system. We note that the coefficients AI.
i.~ . ... , QJ!. Q'2' ... in eqns (l2a, b) are not related to those in eqns (5)-(7).

First. we substitute eqns (12a. b) into eqns (I) and (2) ; then we set £ = 0 and solve for
I.e and Q,c' This is precisely the stability problem for no imperfections. Next, we include A}
and the Q11 as well as <and the Q,c' but consider the remaining I'n and Qin to be zero; then
we select the heretofore arbitrary exponents M and N so as to obtain the "least-degenerate"
two-term approximation (we shall explain and illustrate the concept of least degeneracy in
the examples that follow); finally, we solve for i' l and the QJI' Next we add )'2 and the Qj2
to the expansion; and repeat the procedure. Any desired number of terms may be included.

The proposed technique is applied in the next two sections to problems of symmetric
and asymmetric bifurcation with one degree of freedom, in order to highlight the main
features of the procedure.

4. SYMMETRIC BIFLRCATION

The first example is a one-degree-of-freedom problem discussed by Croll and Walker
(1972 : Chap. 5) and illustrated in Fig. 2. The exact form of the total potential energy is

Ir, L L

Fig. 2. Example considered for symmetric bifurcation.
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V(Q, i;::) = (sin Q-sin::)= -2i.(cost:-cos Q),
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(13)

where;, == F/KL, and Q and I: have the meaning of angles, as shown in Fig. 2. Here we do
not need a subscript on Q.

We begin by expanding the trigonometric functions as follows:

I. I
sin Q "" Q- 6 Q'+ 120 Q5

I . I 4 I h

cos Q "" I - :2 Q' + 24 Q - 720 Q

Sin:: "" I:

cos:: "" I

(14a)

(14b)

(14c)

(14d)

Next we substitute eqns (14a--d) into (13), retain terms up to and including fourth
order, and obtain the following approximate expression for V:

The equilibrium condition is given by

I dV 2 1 . ( I,') ( I 2 )
:2dQ=Q01a'-3Q01ax-I'01ax Q01ax-6Qma" -::,I-:2 Q01ax =0

and the condition of critical stability is given by

(l5a)

(l5b)

(15c)

When:: = 0, it follows from eqns (12a, b) that i·max = Ac and Q01ax = Qc; then eqns
(15b, c) reduce to

(16a)

and

(16b)

The roots are iT = 1 and Qc = O. We note the repeated roots.
To determine the influence of the imperfection I:, we begin by including the second

terms in eqns (12a, b)

1.
01

,,, = I + i. I 1:\/

Q1llax == Q1E.\ ..

(l7a)

(17b)

where M and N are arbitrary, but greater than zero, and i' l and QI are unknown. Sub
stituting eqns (I7a, b) into (ISb, c), we obtain
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~ dV =Q'c2Jf'I_Q'cHf_7c_ I Q4 1,4lf+I_ 7 /' Q "M+V+~/' Q3 c3M+N=O2 dQ IGIG _c, 12 I' ~ 'I IG 3 'I IG

I~~'=7Q ,.\f+I_3Q2,.21/_
I
_Q' eH/-1_7' cN+I' Q2c2M+N=O7 ' .. I " I G ,IG -1'1 G 'I IG .

- dQ- -

(l8a)

(l8b)

Some reduction in the number of terms can be made immediately: for small s and positive
110J and N, S4M+ I « G,\I~ I, SHf+V « S'M, I:,H-V « f,2M, and S3M+ 1 « SM+ I regardless of the
choice of M and N, and the corresponding terms can be ignored in eqns (l8a, b). The result
is

(l8c)

(l8d)

To obtain the least-degenerate approximation from eqns (I8c, d), we select M and N
so that these equations retain the maximum number of terms and, hence, produce the
maximum amount of information. Ideally, if it were possible, we would choose M and N
such that

and

2AI + I = 3M = I = M + N.

/'vl + 1 = 2M = N,

(l9a)

(19b)

Generally, this is not possible and the proper selection of M and N will only satisfy
some of the relationships given in eqns (19a, b). The idea is to choose the "'least-degenerate"
combination. Next we consider the various possibilities one by one.

If we choose 2M + I = 3M in eqn (19a). then M = I, and it follows from eqn (l9b)
that N = 2, There is a single dominant term in eqn (18c), and it is -2£, which leads to the
inconsistent conclusion 2 = 0 if f, # O. Hence. this is not the proper choice for M and N.

If we choose 2M + I = I. then M = N = O. This choice will not produce any new
information. It places QI and I.j on the same level with the solution corresponding to s = 0;
hence, Q I and /'1 are zero. This also is not the proper choice for M and N.

Ihve choose 3M = I. then M = I 3 and N = 2/3. Equations (18c, d) reduce to

and

and

From which we find

D"( -3Q; -2/\) +0(1;4 ') = O.

1.
1

= -32.

(20a)

(20b)

(2Ia)

(2Ib)

This is the only choice for IVI and N that does not lead to inconsistencies and produces
new information. Equations (20a. b) are called the least-degenerate form of eqns (l8c, d),
and the results in eqns (21 a, b) are called the least-degenerate approximation. So far the
expansions have the following forms:



and

Qllla\ =;:1.'
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(22a)

(22b)

These results agree with eqn (10).
To continue the process. we now add mon: terms to the expansions in eqns (12a. b):

Q. = I:' '+ Q /' (23a)

/. =

,
1-' i.-., . / (23b)

We can follow the procedure outlined abO\e to determine P and R. or we can be
guided by eqns (20) and (22) and choose P = 1 and R = 4 3. (One can readily verify that
the other choices for P and R lead to inconsistencies.) Then substituting eqns (23a, b) into
eqns (l5b, c) leads to

I:~ '( I 4i. -12Q,) -0(;=) = o.

From which we find that

Q. = ()

and

]
/.

-+

and that so far the expansions have the following forms:

Q"U\ = I:' '+()(i,'

(24a)

(24b)

(25a)

(25b)

(26a)

,
.1

IT],! \ == I .~ , r-
I ~

+4 t- 0(;:" ). (26b)

The order of the trunca tion error in cqn (26b) is ;:= ; thus. if more terms in the expansions
for Qn"" and ;'ma\ are to be found. then to be consistent we must include the second term in
the expansion of cos I' given in eqn (l4d). A related question is how many terms in the
expansions of Qma\ and i. m ,,, are consistent with the fourth-order expansion of V given in
eqn (15a). To answer this question. we incl ude more terms in the expansion of Vand write

(27)

When we repeat the procedure described above. we tind that when we include only fifth
order terms in the expression for V the results are the same as those in eqns (26). But when
sixth (and higher) order terms are included. we obtam
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Table I. Maximum load. i'ma>' for different values of the imperfection
parameter. 1'. for symmetric bifuration

Second orderFirst order
Eqn (20)

Eqn (24) Eqn (30)
-------~._-~~~~~~

0.001
0.005
0.010
0.050
0.100
0.200
0.300
0.400

0.985
0.956
0.930
0.796
0.677
0.487
0.328
0.186

0.800
0.689
0.516
0.378
0.259

0.803
0.694
0.531
0.403
0.296

1
Q =fIJ+_£+0(£5/J)

max • 6 (28a)

(28b)

Comparing eqns (26) and (28), we find the last terms in the two sets of expansions are
different; those in eqns (28a, b) are correct. Hence, if a three-term expansion for Amax is
desired, then V must contain sixth order terms.

For the present example, the results of first and second order perturbation analyses
are compared in Table 1. As expected, the differences between first-order and second-order
solutions in I.max (£) grow with £. For example, for a value £ = 0.2, a first order solution would
predict i.max = 0.487, while a second order solution computed from a quartic functional leads
to 0.516. If the approximations in the function V are improved so that it includes terms
with Q to the sixth power, the value of i.max = 0.531. The quadratic approximation is
conservative in the sense that it predicts values that are lower than the correct ones. In this
case the first order perturbation solution is conservative with respect to the second order
one.

5. ASYMMETRIC BIFURCATION

As a second example, we consider the one-degree-of-freedom model studied in Croll
and Walker (1972: Chap. 6) and shown in Fig. 3. The exact expression for the potential
energy in this case is given by

(29a)

where

L

-F

Fig. 3. Example considered for asymmetric bifurcation.
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Bifurcation buckling anaIY'l'

Cl , = 2L(cos/;-cosQJ

I
F= KLi.

4

Next we substitute the following expansions

I , I .j

cos Q == J - ,Q', 24 Q

I
, I:

COS!; == I

into eqns (29) and obtain the following approximate expression for V:

, I . I .j (I, I )
V(Q I';'; c;) = Q - + 2 Q' -- 48 Q - i. ,Q - - 12 Q.j .

(

I I, I : I 4)
"I'.'Q+ Q-- Q'--Q,- 2 12 96 .

The equilibrium condition is given by

I d V 3, I,., ( I, ')":2 dQ = Qma, + 4Q;,a, - 24 QI1la\ -r I'm,,, Qmax - 6 Qm,,,.

(
1 I, I 3)

-I; \ I + .2 Qm,,, - 8 Q !~"l\ - 48 Q rna, = 0

and condition of critical stability is given by
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(29b)

(29c)

(29d)

(30)

(3Ia)

(31 b)

(3Ic)

Next we substitute eqns ( 12a, b) into egns (31 b, C), set I: = 0, and solve for I'e and Qc
The solution is i'e = 1 and Qc = 0, To determine the influence of the imperfection, we
substitute I'e and Qc into egns (12a, b), retain the first two terms, substitute the result into
eqns (31 b, c), and obtain

I d ~'

.2 dQ

1 '1
_; , Q 1;\1, 1 + ~ Q '11 _ I. 1QI e11

- \ = 0 (32a)

-1:+3Q ;;\1 -21
1
1:\ = O. (32b)

Next, we choose the values Jl, N. i. 1 and QI that produce the least-degenerate approxi
mation. Following the procedure described in the previous section, we find that
M = N = 1/2, QT = -43. and i = 3 2Q" Thus, so far we have
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")

Qn,,, = ±; v -31:.

(33a)

(33b)

This is the same result obtained by Croll and Walker (1972). For values of I: > 0, Ac and
Qc are imaginary: hence. the system is only sensitive to imperfections that correspond to
negative values of E. The result is known as the "one-half-power law".

To extend the expansions. we write

~

Q,n." =1: 3' ~ 31: + Q1
EP

.

(34a)

(34b)

Then we substituteeqns (34a. b) intoeqns (3Ib. c) and find that P = R = I, )'1 = -2/3,
and Q1 = 2( 1+ i. 2 ):3. Hence. so far we have

")

I +, -I:'~ §(/;')

")

3' ~I: + 2-7 (1;').

where t' = 3:: and only the positive root IS considered.

6. DISClSSIO'J A"JD CONCLUSIONS

(35a)

(35b)

We have described a new. dIrect procedure for obtaining the relationships among the
critical loads. the critical coordinates. and a measure of the amplitude of the imperfection.
Difficulties arise in obtaining these expansions because the roots of the conditions for
equilibrium and critical stability are repeated in the absence of an imperfection. Thus, the
expansions of the critical loads and coordinates do not go in integral powers of the
imperfection describing parameter. and regular perturbation procedures are not applicable.
Instead. we develop a direct approach that is similar to the one used in the analysis of
singular perturbation problems to ohtain the correct coordinate stretching. In the present
approach. we assume the expansions for the critical loads and corresponding coordinates
in terms of arbitrary powers of the imperfection describing parameter. Then, by using the
principle of least-degeneracy. we determine the coefficients and exponents in the various
terms.

Here we demonstrated the procedure by applying it for the first time to two well
known problems. each having a single degree of freedom. In future work, the procedure
will be extended to systems having many degrees of freedom.
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